Lagrange Geometry via Complex Lagrange Geometry

نویسنده

  • Gheorghe Munteanu
چکیده

Asking that the metric of a complex Finsler space should be strong convex, Abate and Patrizio ([1]) associate to the real tangent bundle a real Finsler metric for which they analyze the relation between Cartan (real) connection of the obtained space and the real image of Chern-Finsler complex connection. Following the same ideas, in the present paper we shall deal with the more general case of a complex Lagrange space (M, L). As distinct from these authors, we shall associate to the Hermitian metric gij̄(z, η) of a complex Lagrangian L its real representation R gab (x, y). The obtained real space (M, R gab) is a generalized Lagrange space ([10]). Furthermore, the possibility of its reduction to one real Lagrange space, in particular the Finsler one, is studied. A comparative analysis of the elements of Lagrange geometry ([10]): nonlinear connection, N−linear connection, metric canonical connection, and so on, and their corresponding real image from the complex Lagrange geometry ([11]) is made. AMS Mathematics Subject Classification (2000): 53B40, 53C60

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements

In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...

متن کامل

Euler-Lagrange equations and geometric mechanics on Lie groups with potential

Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...

متن کامل

Lagrange Geometry on Tangent Manifolds

Lagrange geometry is the geometry of the tensor field defined by the fiberwise Hessian of a nondegenerate Lagrangian function on the total space of a tangent bundle. Finsler geometry is the geometrically most interesting case of Lagrange geometry. In this paper, we study a generalization which consists of replacing the tangent bundle by a general tangent manifold, and the Lagrangian by a family...

متن کامل

Lagrange geometry on tangent manifolds by Izu Vaisman

Lagrange geometry is the geometry of the tensor field defined by the fiberwise Hessian of a non degenerate Lagrangian function on the total space of a tangent bundle. Finsler geometry is the geometrically most interesting case of Lagrange geometry. In this paper, we study a generalization, which consists of replacing the tangent bundle by a general tangent manifold, and the Lagrangian by a fami...

متن کامل

The Complex Geometry of Lagrange Top

Abstract We prove that the heavy symmetric top (Lagrange, 1788) linearizes on a two–dimensional non– compact algebraic group – the generalized Jacobian of an elliptic curve with two points identified. This leads to a transparent description of its complex and real invariant level sets. We deduce, by making use of a Baker–Akhiezer function, simple explicit formulae for the general solution of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004